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Abstract 

Physiologically based pharmacokinetic (PBPK) modeling is a well-established 

toxicological tool designed to transform an exposure into a target tissue dose. The 

emergence of federal and state programs for environmental health tracking and the 

availability of exposure monitoring through biomarkers creates the opportunity to apply 

PBPK models to reconstruct population exposures to environmental contaminants from 

urine, blood, and tissue samples. In this paper we lay out and illustrate a plan for 

examining population exposures using an integrated Bayesian statistical framework.  

The approach provides flexibility for evaluating multiple exposure scenarios and 

alternative datasets, which will be critical for systematically reconstructing exposures 

using biomarkers from a large population. We demonstrate the approach by 

reconstructing population-scale source-to-dose relationships for a population exposed to 

trichloroethylene (TCE) through inhalation. We used biomarker data from eight adult 

males exposed to TCE vapors in air for 240 minutes in an enclosed chamber. In the 

application, two groups of individuals had distinctly different TCE concentrations in 

blood despite being contained in the same experimental chamber.  We successfully 

reconstructed the exposure scenarios for both subgroups - although the reconstruction of 

one subgroup is different than what is believed to be the true experimental conditions.  

We where however unable to predict with high certainty the concentration of TCE in air.  

We also present several methods for improving the reliability of the population-scale 

exposure reconstructions. 
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Introduction 

 Physiologically based pharmacokinetic (PBPK) modeling is a well-established 

toxicological tool designed to transform an exposure into a target tissue dose (Ramsey 

and Andersen, 1984; Klaassen, 1996).  In reviewing the published literature in journals 

such as Toxicology and Applied Pharmacology, Risk Analysis, and Environmental Health 

Perspectives, we observe that PBPK modeling is poised to move beyond the phase of 

model development to the phase of model application.  The motivation for such a move 

is driven in large part by the emergence of federal and state programs for environmental 

health tracking. There is certainly consensus in the community on how to build PBPK 

models—basing them on known physiological processes that are easily generalized 

(blood flow rates, tissues volumes, breathing rates, etc.), on chemical-specific processes 

that are predicted from existing data and regression models (partition coefficients, 

chemical density, molecular weight, etc.), and on processes, such as metabolic constants 

that are highly variable among species and individuals (Gargas et al., 1989).  Moreover, 

the US EPA National Exposure Research Laboratory in Las Vegas has had a generalized 

PBPK model called the Exposure Related Dose Estimating Model (ERDEM) for some 

five years. 

 But there is less consensus or discussion on how to use PBPK models to find 

environmental determinants of chronic disease from biomonitoring - such as measured 

pollutant levels in blood and urine samples for a cross section of the population.  Yet 

such applications of PBPK  models are needed to build hypotheses about possible 

relationships between exposures, dose, and disease, to monitor trends in environmental 

quality and disease, and to provide public health professionals with reliable information 
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for early detection and prevention of diseases.  Rather than new models, such issues 

demand a new framework for applying PBPK models. 

 An opportunity for such a new model framework is improving the process of 

relating the production, use, or release of a chemical and the corresponding dose to an 

exposed population.  Most earlier PBPK applications were based on or applied to well-

understood or characterized studies of an individual or a small cohort.  The new 

challenge is how to apply PBPK models to larger and more poorly characterized human 

populations which have highly variable exposures, activities, physiology, and 

pharmacokinetics.  An important research question here is whether PBPK models are 

broadly applicable as tools for relating dose biomarkers to measures of population 

exposure and health risk.  If feasible this method offers the opportunity to better relate 

biomarkers to specific sources of exposure, e.g., household pesticide use versus food 

residues, and VOC emissions from consumer products versus those from automobiles or 

from stationary sources. 

 Although limited to date, there have been recent advancements on this front.  

The EPA dioxin reassessment used PBPK models to evaluate the reasonableness of their 

earlier estimated cumulative dietary intake of dioxin compounds (Pinsky and Lorber, 

1998; USEPA, 2001).  Wallace and Pellezzari (1995) and Wallace (1997) assessed the 

utility of using exhaled breath for estimating exposure and body burden for volatile 

organic compounds based on PBPK models.  Chinnery and Gleason (1993) and McKone 

(1993) used PBPK models of chloroform applied to breath samples reported by Jo et al. 

(1990) to determine the relative contribution of inhalation and dermal exposure routes 

for adults showering  with water containing residual chloroform for disinfection.  And 

by developing methods to treat PBPK model parameters as random variables within the 
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constraints of empirically observed distributions, Bois et al. (1996a, 1996b) and Gelman 

et al. (1996) built population-based models for tetrachloroethylene and benzene. 

 Resources and opportunities to produce population-scale source to dose 

exposure reconstructions may come from new and ongoing national and regional 

epidemiological surveys.  The Center for Disease Control (CDC) National Health and 

Nutrition Examination Survey (NHANES) (CDC, 2001) employs a home interview with 

health tests to collect information about the health and diet of people in the United 

States.  It includes data on blood levels of cadmium, lead, mercury, pesticides, and 

combustion products. Through the National Human Exposure Assessment Survey 

(NHEXAS) (Sexton et al., 1995), the Children’s Total Exposure to Persistent Pesticides 

and other Persistent Organic Pollutants (CTEPP) (USEPA, 2002), and other programs, 

the U.S. EPA is developing databases on exposures of human populations to a wide 

range of pollutants in air, water, food, soil, and indoor/residential environments, and 

over a wide range of space and time scales.  The University of California, Berkeley 

Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) 

(Castorina et al., 2002) is collecting biomarkers for pesticides and other important 

pollutants from mothers and their newborn children in farming communities.  The 

information is gathered from conception through early childhood. 

 However, biomarkers obtained from these surveys are inherently variable owing 

to the inter- and intra-individual variability among exposures to the population and the 

physiology of the individuals in the population.  The key questions are whether and 

how well we can quantify the source to dose relation against the noise contributed by 

these other factors.  Examining the input and output information obtained in these 

surveys will be critical.  What exposure information is currently available, and what 
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additional information is likely or practical to be obtained?  How do we make PBPK 

models compatible with the available information instead of using the models in the 

form originally developed – based on controlled laboratory conditions? 

 Answering these questions is an important direction for ongoing development 

and application of PBPK models.  It will require more use and development of statistical 

and other quantitative methods for integrating uncertainties and variability in both 

model predictions and biomarker data. 

 In this paper we lay out and illustrate a plan for examining these questions using 

an integrated Bayesian statistical framework.  The approach provides flexibility for 

evaluating multiple exposure scenarios and alternative datasets, which will be critical 

for systematically reconstructing exposures using biomarkers from a large population.  

The Bayesian framework will also help us apply PBPK models for setting priorities for 

exposure and health monitoring programs, and for directing what exposure information 

to gather in the near term. 

 We demonstrate the approach by reconstructing population-scale source-to-dose 

relationships for a population exposed to trichloroethylene through inhalation.  We also 

discuss methods to determine what exposure assessment information is important in the 

reconstructions, what information other than that commonly gathered in exposure 

assessments could improve the dose reconstruction, and how quality and quantity of 

data affects the reconstructions, thereby assisting future exposure and epidemiological 

studies. 
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Method: Exposure Classification Using Bayesian Statistics 

 In the most general sense, an exposure assessment involves quantifying a link 

between a source of contamination, its transport and transformation among a set of 

environmental media, human contact with exposure media, and the route of application 

or entry (USEPA, 1989; McKone and Daniels, 1991a; USEPA, 1992; Zartarian et al., 1997).  

Environmental media include outdoor air, indoor air, ground-surface soil, root-zone 

soil, plants, ground water, and surface water in a contaminated landscape as well as 

carpets, furnishings, etc. in indoor environments.  Exposure media include substances 

with which we have direct contact such as outdoor air, indoor air, food, household dust, 

household surfaces, homegrown foods, animal food products, and tap water.  Exposure 

pathways define the links between an environmental media and exposure media for 

inhalation, ingestion, and dermal uptake routes of exposure.  Potential dose, expressed 

as average daily dose, is the amount of material per unit of body weight per day 

(mg/kg-d) that enters the lungs (inhalation route), enters the gastrointestinal tract 

(ingestion route), or crosses into the stratum corneum (dermal-contact route) (USEPA, 

1989; McKone and Daniels, 1991a).  This total potential dose is commonly used as a basis 

for projecting the incidence of health detriment within the exposed population. 

 However, each component in the exposure-to-dose link includes some level of 

uncertainty or bias  For example conceptual and process models in PBPK models are 

developed from infrequently sampled yet highly variable and uncertain data.  Ignoring 

the variability and uncertainty in the models can imply over-confidence in the PBPK 

model, and can cause erroneous estimates of exposure-to-dose relationships. 

 We confront these uncertainties using Bayesian inference methods (see e.g., 

Morgan and Henrion, 1990).  In this approach, the practitioner first develops 
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mechanistic, statistical, and/or empirical models that predict the source to dose 

relationship.  Any unknown, uncertain, or variable model input is probabilistically 

described using parametric or non-parametric uncertainty distributions.  Examples of 

unknowns include the alternative exposure scenarios, variability in the 

pharmacokinetics, alternative conceptual models such as two-compartment or five-

compartment PBPK models, first-order or second-order environmental degradation, 

well-mixed or multi-compartment indoor air models, and various model parameter 

uncertainties.  Field data, epidemiological studies, best engineering judgement, and any 

quantitative or subjective information are possible sources for developing value ranges 

of the probabilistic distributions.  Generally, the practitioner will assign wide 

uncertainty distributions due to the limited information. 

 The practitioner next predicts model endpoints that can be compared to specific 

biomarker data.  A Monte Carlo or Latin Hypercube sampling technique may be applied 

to generate a library consisting of several thousand realizations of exposure scenarios 

and biomarker predictions.  Sufficient sampling of the uncertainty distributions is 

essential to represent the full range of possible exposure scenarios.  One method for 

testing sufficiency of sampling is by increasing the sample size until changes in 

summary statistics (e.g., means, variances, coefficients of variation) of model predictions 

are negligible with each increase in sample size.  The values and the uncertainties of 

model predictions, model input parameters, and conceptual models employed are often 

referred to as the "prior".  They collectively define the model formulation prior to being 

compared to data. 

 The practitioner assesses the agreement between model predictions and 

biomarker data using a technique called Bayesian updating.  Brand et al., 1994, Sohn et 
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al., 2000, and Bois et al., 1996a describe the technique in detail.  Recent applications in 

multi-pathway, multi-parameter, environmental systems include assessing 

environmental health risk (e.g. Taylor et al., 1993; Spear and Bois, 1994, Brand et al., 

1995; Pinsky and Lorber, 1998), analyzing groundwater monitoring data (e.g. Dilks et al., 

1992; Wolfson et al., 1996; Sohn et al., 2000), and conducting environmental value-of-

information analyses (e.g. Finkel and Evans, 1987; Dakins et al., 1996).  We therefore 

briefly describe the relevant details of the technique as they pertain to population-scale 

source-to-dose analyses. 

 Each dose prediction in the library of model simulations is compared to 

biomarker data using Bayes’ rule (Equation 1). 

           (1) p( k P K
kY jO)=

i=1L(O jYi)p(Yi)

L(O jYk)p(Y )

where p(Yk|O) is the probability of the kth Monte Carlo simulation making prediction Yk 

given the biomarker data O; L(O|Yk) is the likelihood of observing measurements O 

given model prediction Yk; p(Yk) is the prior probability of the kth Monte Carlo 

simulation; and K is the number of Monte Carlo simulations.  Before data comparison, 

each of the model realizations are usually assumed equally likely (i.e., p(Yk)=1/K). 

 The probability p(Yk|O) is often referred to as the posterior probability of the kth 

realization since it describes the probability after the kth realization is compared to data.  

In this case, the posterior probability describes the degree that the kth dose prediction - 

and the associated model input parameters, conceptual models, and exposure scenario 

used to generate that prediction - accurately describes the biomarkers.  The posterior 

probability thus replaces all of the uncertain prior probabilities (e.g., unknown model 

input parameters and exposure scenarios) and model predictions (e.g., dose estimates).  
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Brand et al. (1994), Sohn et al. (2000), and Sohn et al. (2002) provide detailed description 

for estimating posterior means, variances, and correlation coefficients. 

 The likelihood function, L(O|Yk), in Equation 1 quantifies the error structure of 

the data, i.e., the differences between the data and the model predictions resulting from 

measurement error, spatial and temporal averaging or correlations, and imperfect model 

representation.  If many independent measurements are considered, for example 

following random samples in a large epidemiological survey, the likelihood of observing 

all of the measurements is the product of all of the individual likelihoods: 

           (2) L( s= 1
S L( sO jYk)=

Q
O jYs;k)

where S is the number of independent measurements. 

 For unbiased measurements with a normally distributed error, a Gaussian 

likelihood function is appropriate (see e.g., Taylor et al., 1993; Brand and Small, 1995; 

Dakins et al., 1996; and Sohn et al., 2000).  Sohn et al. (2000) suggest alternative 

likelihood functions when errors are not independent and normally distributed. 

 We note that the Bayesian updating procedure presented here is executed in 

several sequential steps: (1) develop models  and predict dose, (2) compare predictions 

to data, and (3) update uncertainties using the likelihoods.  Alternatively, one could 

predict model endpoints and compare them to biomarkers using one of several other 

variations of Bayesian updating such as Markov Chain Monte Carlo or Gibbs sampling 

(see e.g., Gelman et al., 1995, 1996; Roy and Georgopoulos, 1998).  These approaches 

apply Equations 1 and 2 iteratively and are capable of quickly searching the model 

parameter uncertainties.  However, we did not find these more complex methods 

necessary for the illustrative demonstration that follows.  Executing the PBPK models 
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was very fast on a standard desktop personal computer so we did not have difficulty 

adequately sampling the uncertainties and variability in the model inputs. 

Application to a Trichloroethylene Exposed Cohort Study 

 We demonstrate the approach using data from a group of individuals exposed to 

TCE in a controlled laboratory setting.  We recognize that the variability and 

uncertainties in a large health tracking study will be larger that those found in this 

dataset.  Nevertheless, the errors and variability in the data from this small sample are 

sufficient to demonstrate the approach and highlight the difficulties that arise in 

reconstructing exposures to populations. 

 The biomarker data come from experiments conducted by Fisher and colleagues 

(Fisher, 1998).  Eight adult males were exposed to (TCE) vapors in air for 240 minutes in 

an enclosed chamber.  The details of the experiment and the laboratory setup are 

described in Fisher, 1998.  Figure 1 plots the times-series concentrations of TCE in the 

venous blood of the eight exposed subjects.  The pooled variance of the log-transformed 

concentrations (Weisberg, pg. 90) is 0.38 and the error structure of the log-transformed 

concentrations appears to be Gaussian.  All eight individuals were contained in the same 

chamber, though we note that three individuals, which we call subgroup A, have 

significantly lower concentrations than the other five individuals, which we call 

subgroup B.  There are no obvious experimental or equipment variations that explains 

the differences in the blood concentrations. 

 We first developed a PBPK model to predict the concentration of TCE in venous 

blood from exposure by inhalation. Ramsey and Anderson (1984) provide details of a 

typical first-order multi-compartment PBPK model. Researchers at the US EPA 

successfully developed a multi-compartment PBPK model using the ERDEM model 
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(formerly referred to as DEEM) for an individual exposed to TCE by inhalation 

(Blancato et al., 2000).  Because this model required information and detail not usually 

available in population-scale exposure studies, we used a simpler PBPK model for the 

Bayesian inference process, though we could have developed a simple PBPK model in 

ERDEM.  Our model is a  first-order five-compartment model consisting of four well-

mixed tissue groups; fat, liver, slowly- and rapidly perfuse tissue, and a pulmonary 

compartment to represent the blood/air transfer in the lungs.  Metabolism in the liver 

was described by Michaelis-Menton kinetics.  The model was coded in FORTRAN and 

solved using the VODE solver (Brown et al., 1988). 

 Table 1 summarizes the parameters needed to characterize the uncertainty and 

variability in the exposure to TCE and the pharmacokinetics of this population.  They 

include wide value ranges for both exposure scenarios and human pharmacokinetics.  

We predicted TCE concentration in blood by sampling the probability distribution in 

Table 1 using Latin Hypercube sampling and applying the scenarios to the five-

compartment PBPK model.  Twenty thousand samples and model simulations 

sufficiently sampled the parameter value ranges summarized in Table 1.  Figure 2 shows 

the range of predicted TCE concentration in blood.  The wide uncertainty bounds in 

Figure 2 result from the combined uncertainties in the exposure scenario and 

pharmacokinetics. 

 We next applied the Bayesian exposure classification algorithm to estimate the 

exposures for the two subgroups.  Figure 3 shows the reconstructed exposure scenarios 

and Figure 4 shows the reconstructed TCE concentration in the blood.  The exposure 

reconstruction for subgroup A is consistent with the experimental conditions.  The 

uncertainty bounds narrow to the values reported by Fisher (1998) for the duration of 
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the exposure (Figure 3), the onset of the exposure (Figure 3), and the predicted 

concentration in blood (Figure 4).  The predicted TCE concentration in air (Figure 3), 

though its median is close to the reported air concentration, still contains considerable 

uncertainty.  This is despite the high temporal resolution of the biomarkers. 

 In contrast to subgroup A, the exposure reconstruction for subgroup B are not 

consistent with the values reported by Fisher (1998).  The Bayesian updating reduces 

uncertainty, but the predicted exposure duration and onset are longer than what is 

reported to have occurred in the experiment. 

 The differences in reconstructions for the two datasets are in large part due to the 

unexplained differences in the TCE concentrations.  Our discussions with the authors of 

the experimental study did not provide an obvious explanation.  One explanation, 

though highly speculative, may be that the experimental chamber was not uniformly 

well-mixed.  A non-well-mixed chamber could produce turbulent eddies of high 

concentration which some of the individuals (i.e., those defined in subgroup B) were 

exposed to. 

 Another explanation may be that the two subgroups reflect different metabolism 

profiles or breathing rates by the subjects.  However, these do not explain the presence 

of two unique groups and not a simple continuum.  If metabolism or breathing rates are 

random effects, and thus probabilistically distributed over some quantifiable range, we 

would expect the blood concentrations to be somewhat evenly spread throughout the 

range of concentrations.  Instead we find two unique groups.  In addition, we can 

compare the metabolism and breathing rates of the subjects by comparing the slopes of 

the curves in Figure 1 after exposure ends.  We can visually see that the slopes are 
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similar for each subject, suggesting that the various TCE elimination routes are similar 

across the population. 

 Finally, we used Bayesian inference to reconstruct the exposure of the whole 

population.  Figure 3 and 4 shows the reconstructed exposure conditions and the 

predicted TCE concentration in blood.  Based on the reported conditions of the 

experiment, the predicted TCE concentration in blood (Figure 4c) has erroneous 

uncertainty bars.  They are so narrow that a large percentage of the data fall outside of 

the two-sided 95% confidence interval.  This problem arises because the exposure 

reconstruction assumed a single-mode population, but the data clearly show two 

distinct modes (or subgroups).  We show this result to emphasis the importance of 

applying correct modeling assumptions when developing source-to-dose links, 

irrespective of the exposure reconstruction method employed.  In this case, a first-order 

PBPK model coupled to a single-zone indoor air chamber is inappropriate for a dataset 

that is bi-modal.  

 In actual health-tracking we could not expect to have sufficient data to 

dissaggregate the population into subgroups, or to even realize that subgroups exist.  

We may have more sampled individuals, but it is unlikely that we would have such 

high temporal resolution for many individuals.  In Figure 5, we constructed an example 

of the biomarker data that might come from a true health-tracking study.  We 

constructed this figure by randomly selecting data at various times from the study 

population.  Here we see that random selection of observations from this group tends to 

mask the two-modes of the population.  The time series in Figure 5 appears to represent 

a single-mode population with error due to random inter-individual variability. 
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 Figure 6 shows the exposure reconstruction for this smaller dataset.  The 

uncertainty around the predicted TCE concentrations, though wide, appears to correctly 

bound the data.  The predicted exposure conditions are also wide owing to the error in 

the data, the possible non-well mixed conditions in the chamber, and uncertainty in the 

pharmacokinetics (Table 1). 

 

Discussion 

 In the preceding paragraphs, we applied Bayesian inference tool to reconstruct 

exposure conditions.  The process is not straightforward and can be confounded by 

heterogeneity and variability in exposure conditions and metabolism.  Though the 

results suggest that two sub-groups existed, and that they were exposed to different air 

concentrations, there still remained considerable uncertainty in the exposures estimates.  

For example, we were unable to predict with high certainty the concentration of TCE in 

air from any of the datasets.  An important limitation of using PBPK models to interpret 

biomarker data may be the non-uniqueness of inverse solutions due to the combined 

effects of variability in exposures and human pharmacokinetics. 

 Nevertheless, the Bayesian exposure assessment approach offers some key 

advantages for reconstructing exposures.  An important attribute of the approach is its 

flexibility for analyzing and comparing the utility of various types or quantities of data 

without excessive computational or numerical burdens.  For example, we recalculated 

exposure reconstructions using data from subgroup A only, B only, A and B combined, 

and a randomly sampled set without re-executing Monte Carlo simulations of the PBPK 

model. 
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 We can also test whether more data or other types of data could improve the 

exposure reconstructions.  For example, could better information about the 

environmental, exposure, and pharmacokinetic properties improve reliability of 

exposure reconstruction, and at what cost?  As a demonstration of such an exploratory 

search, we recalculated each of the exposure reconstructions with the added assumption 

that (1) the exposure duration is known or (2) the time of exposure onset is known.  

Including the additional information did not reduce the uncertainty in the predicted 

concentration of TCE in air in any of the reconstructions; we therefore did not plot the 

results.  This suggests that the population-scale variability of the pharmacokinetics alone 

or in correlation with other unknowns dominate the uncertainty of the predicted TCE 

concentration in air.  One should thus not expend excessive resources obtaining either 

information alone if reducing uncertainty in the predicted concentration of TCE in air is 

the primary objective. 

Recommendations 

 Given the potential problems we observe for exposure reconstruction, we must 

consider what properties of a biomarker or other types of information can improve the 

reliability of the exposure reconstruction process.  Because the dose delivered to an 

exposed individual depends on (a) the time scales of the pharmacokinetics of the agent, 

(b) the route of entry, and (c) the rate of intake or uptake at the human/environment 

boundaries, we must first recognize the importance of selecting the most appropriate 

time scale for collecting information.  For example, resolving the temporal variability of 

exposure events requires differentiating between (i) a recent relatively mild peak 

exposure or a long-term relatively high exposure, or (ii) many common exposures 

occurring simultaneously.  How persistent must the biomarker (body burden) be 
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relative to exposure duration for this task?  That is, if we want to infer exposure to a 

pollutant over a one-week period, we must consider the minimum biological half-life of 

the biomarker required to reconstruct doses reliably. 

 Of similar importance is the time characteristics of PBPK model input 

parameters.  For example, breathing automatically averages air concentrations over the 

duration of a breath (at least at the lung level), and drinking and eating are 

discontinuous.  These conditions define both limiting processes and the time-averaging 

periods for health-relevant doses.  PBPK models establish the characteristic time of 

pollutant within the human body.  This time is needed to classify exposures as 

intermittent (going to zero or negligible levels periodically or randomly) versus 

continuous (with various degrees of stability/uncertainty), and as sequential, additive, 

or cumulative. Exposures to carcinogens at low rates of uptake (when the cumulative 

damage rate is proportional to the uptake) require a dose assessment with a time 

resolution that need only reflects the cumulative uptake or intake of the agent into the 

body.  In contrast, an agent such as an acid gas (where short term non-linear effects with 

large variations in respiratory susceptibility are important) requires much more detailed 

specification of the time, population, and even spatial resolution of exposure.  PBPK 

modeling may help in the design, timing, and placement of measurements that are 

necessary for developing such a technique. 

 Based on the results presented here, we propose that the persistence of the 

biomarker should be long relative to exposure duration for estimating long-term, or 

population scale, exposure effects.  That is if one wants to infer exposure to a pesticide 

over a one week period, it is useful to have a biomarker that persists for more than a 

week.  Perhaps the best marker is one that is truly cumulative, i.e. a chromosome 
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aberration that is heritable from one cell generation to another.  But how do we establish 

a lower bound on biomarker persistence?  In the TCE dataset, high temporal resolution 

throughout the exposure event allowed us to reconstruct exposures for each of the 

subgroups with reasonable success.  Could even better resolution or a more persistent 

biomarker improve the predictions of the TCE concentration in air? 

 Better understanding of how variability in metabolism impacts the reliability of 

PBPK models to determine unique links between exposure and tissue dose is also critical 

when designing exposure classification studies.  Are PBPK models so limited by 

metabolic pathway uncertainty/variability, that higher compartment resolution – and 

thus the precision of the model predictions or exposure estimates – is of no value?  This 

could the explain some of the uncertainty in the exposure reconstructions for the various 

combinations of the TCE dataset.  Or will age-specific variation of physiological 

parameters, particularly for persistent chemicals such as DDT, PCBs, TCDD that can 

accumulate in tissues (fat in particular) over decades make population-wide exposure-

to-dose impact assessments too specific to certain subpopulations, in this case according 

to age breakdown? 

 Such exploratory studies and classification studies should be carried out before 

and during health-tracking studies to ensure that the practitioner obtains the most 

informative data, whether they are environmental, biological, or chemical (i.e., the 

properties of the pollutant).  However, these data for a wide number of chemicals and 

exposure routes are not adequately described in the current literature on PBPK models 

or epidemiological surveys. 

 As a last point, we  note that the reconstruction of the combined dataset (Figure 

5) stresses the importance of appropriately developing and applying PBPK models that 
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are consistent with the data.  For example, reconstructing a two-mode population using 

a singe-model PBPK model resulted in incorrect uncertainty estimates.  Either the 

subgroups should be analyzed separately or a two-mode model should have been 

developed.  When the dataset is sparse (Figure 7), the practitioner may satisfactorily 

describe the data with a single-mode PBPK model. 

 

Concluding Remarks 

 Heath assessments require public-health tracking and health tracking  requires 

exposure tracking, a process for linking body burdens as reflected in biomarkers to a 

distribution of population doses.  Of particular importance is the ability to classify and 

link health outcomes with exposures to harmful substances—pesticides, industrial 

chemicals, combustion products, consumer products, etc.  This requires both sufficient 

and reliable information about population exposures and doses to those pollutant 

sources that most significantly contribute to observed markers of potential health 

detriment. To make better use of body burden/biomarker data in the process of public 

health tracking, two essential scientific research tools, models and measurements, must 

be better integrated.  Models provide the means to integrate and interpret 

measurements, design hypothesis-driven experiments, and predict the effectiveness of 

risk management strategies.  Measurements, in turn, provide tests of the models and 

“ground truth.” 

 We presented an integrated approach for improving the communication between 

the needs and capabilities of modeling with the needs and capabilities of health surveys.  

The Bayesian statistical approach allows for easily quantifying the value of biomarkers, 

or other environmental, chemical, biological parameters, for exposure classification.  The 
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analysis of the TCE dataset demonstrated some of the attributes of the approach and, 

perhaps more importantly, highlighted the difficulties with back-estimating exposures 

to a large and diverse population.  We provide in the discussion and recommendation 

sections a list of factors that contribute to these difficulties and recommend several 

quantifiable measures that should be studied before and during health and exposure 

surveys to identify what types of biomarkers to gather, when to gather them, and how 

much data is needed. 
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Table 1: Exposure and pharmacokinetic uncertainty or variability.  GM and GSD are 

abbreviations for geometric mean and geometric standard deviation, respectively. 

 

Model Parameter Range Distribution 

Exposure 

TCE Conc. in Air (ppm) 25 - 300 Uniform 

Exposure Duration (hr.) 1 - 6 Uniform 

Onset of Exposure (hr.) -3 - 3 Uniform 

Metabolism 

Vmax (units) GM: 2.84e-5, GSD: 2.38 Lognormal 

Km (units) GM: 8e-4, GSD: 2.8 Lognormal 

Pulmonary Flows 

Q air (l/sec) GM: 0.108, GSD: 2.16 Lognormal 

Q fat (l/min) GM: 0.3, GSD: 2.3 Lognormal 

Q slowly perfuse tissue (l/min) GM: 0.81, GSD: 2.22 Lognormal 

Q rapidly perfuse tissue (l/min) GM: 3.98, GSD: 2.22 Lognormal 

Q liver (l/min) GM: 1.12, GSD: 2.3 Lognormal 

Volume 

V fat (l) GM: 12.87, GSD: 2.1 Lognormal 

V slowly perfuse tissue (l) GM: 42.3, GSD: 2.06 Lognormal 

V rapidly perfuse tissue (l) GM: 12.94, GSD: 2.18 Lognormal 

V liver (l) GM: 2.18, GSD: 2.08 Lognormal 

Partition Coefficient 

P blood/air GM: 18, GSD: 2.18 Lognormal 

P fat GM: 50.9, GSD: 2.3 Lognormal 

P slowly perfuse tissue GM: 1.5, GSD: 2.28 Lognormal 

P rapidly perfuse tissue GM: 3.67, GSD: 2.22 Lognormal 

P liver GM: 5.81, GSD: 2.3 Lognormal 
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Figure 1:  TCE concentrations in venous blood.  Eight adult males were exposed in a 

chamber to TCE in air at a concentration of 100 ppm for 240 minutes.  The TCE 

concentration in air was zero thereafter (t > 240 minutes). 
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Figure 2:  Predictions of TCE concentration in venous blood before comparison to 

biomarker data.  Each thin line represents a concentration profile predicted from a 

sample of the exposure and pharmacokinetic unknowns in Table 1.  Fifty of the 20,000 

simulations are plotted here.  The thick line is the median of the 20,000 simulations and 

the thick dotted like is the upper bound of the two-sided 95% confidence interval.  The 

lower bound is below the limits of the y-axis so is not visible on this figure. 
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Figure 3: Reconstructed exposure and concentration of TCE in air for the datasets 

identified in Figure 1.  The prior and posterior bars presents the uncertainty before and 

after comparison to biomarker data, respectively.  The whiskers of the bars are the two-

sided 95% confidence interval and the circle is the median.  The horizontal line 

represents the value reported by Fisher (1998). 
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Figure 4: Updated predictions of TCE in venous blood using biomarker data from (a) 

sub-group A, (b) sub-group B, and (c) sub-groups A and B (see Figure 1).  The thick 

dotted lines define the two-sided 95% confidence interval.  The thick solid line is the 

median.
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Figure 5: TCE concentration in venous blood generated by randomly sampling the data 

in Figure 1. 
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Figure 6: Reconstructed exposure profile and TCE concentration using the dataset in 

Figure 5.  The prior and posterior bars in the barplot represents the uncertainty before 

and after comparison to biomarker data, respectively.  The whiskers in the barplot 

represent the two-sided 95% confidence interval, the circle is the median, and the 

horizontal line represents the value reported by Fisher (1998).  The thick dotted lines in 

the time series plot define the two-sided 95% confidence interval.  The thick solid line is 

the median. 
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